PaStiX Handbook  6.4.0
starpu_dpotrf.c
Go to the documentation of this file.
1 /**
2  *
3  * @file starpu_dpotrf.c
4  *
5  * PaStiX dpotrf StarPU wrapper.
6  *
7  * @copyright 2016-2024 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria,
8  * Univ. Bordeaux. All rights reserved.
9  *
10  * @version 6.4.0
11  * @author Mathieu Faverge
12  * @author Pierre Ramet
13  * @date 2024-07-05
14  * @generated from /builds/solverstack/pastix/sopalin/starpu/starpu_zpotrf.c, normal z -> d, Thu Aug 29 14:20:34 2024
15  *
16  * @addtogroup starpu_potrf
17  * @{
18  *
19  **/
20 #include "common.h"
21 #include "blend/solver.h"
22 #include "sopalin/sopalin_data.h"
23 #include "pastix_dcores.h"
24 #include "pastix_starpu.h"
25 #include "pastix_dstarpu.h"
26 
27 /**
28  *******************************************************************************
29  *
30  * @brief Submits starpu potrfsp cblk or blok task.
31  *
32  *******************************************************************************
33  *
34  * @param[in] sopalin_data
35  * Solver matrix information structure that will guide the algorithm.
36  *
37  * @param[in] cblk
38  * The column block.
39  *
40  * @param[in] prio
41  * The task priority.
42  *
43  *******************************************************************************/
44 void
45 starpu_task_dpotrfsp( sopalin_data_t *sopalin_data,
46  SolverCblk *cblk,
47  int prio )
48 {
49  SolverBlok *lblk, *blok;
50  pastix_int_t m;
51 
52  if ( cblk->cblktype & CBLK_TASKS_2D ) {
53  starpu_task_blok_dpotrf( sopalin_data, cblk, prio );
54 
55  lblk = cblk[1].fblokptr;
56  for ( blok = cblk->fblokptr + 1, m = 0; blok < lblk; blok++, m++ ) {
57 
60  cblk, blok, prio );
61 
62  /* Skip blocks facing the same cblk */
63  while ( ( blok < lblk ) &&
64  ( blok[0].fcblknm == blok[1].fcblknm ) &&
65  ( blok[0].lcblknm == blok[1].lcblknm ) )
66  {
67  blok++;
68  }
69  }
70  }
71  else {
72  starpu_task_cblk_dpotrfsp( sopalin_data, cblk, prio );
73  }
74 }
75 
76 /**
77  *******************************************************************************
78  *
79  * @brief Submits starpu dgemmsp cblk or blok task.
80  *
81  *******************************************************************************
82  *
83  * @param[in] sopalin_data
84  * Solver matrix information structure that will guide the algorithm.
85  *
86  * @param[in] cblk
87  * The column block.
88  *
89  * @param[in] blokB
90  * The block.
91  *
92  * @param[in] fcblk
93  * The facing column block.
94  *
95  * @param[in] prio
96  * The task priority.
97  *
98  *******************************************************************************/
99 void
100 starpu_task_potrf_dgemmsp( sopalin_data_t *sopalin_data,
101  SolverCblk *cblk,
102  const SolverBlok *blokB,
103  SolverCblk *fcblk,
104  int prio )
105 {
106  const SolverBlok *blokA, *lblk;
107 
108  if ( cblk->cblktype & CBLK_TASKS_2D ) {
109  lblk = cblk[1].fblokptr;
110  for ( blokA = blokB; blokA < lblk; blokA++ ) {
111 
113  cblk, fcblk, blokA, blokB, prio );
114 
115  /* Skip B blocks facing the same cblk */
116  while ( ( blokA < lblk ) &&
117  ( blokA[0].fcblknm == blokA[1].fcblknm ) &&
118  ( blokA[0].lcblknm == blokA[1].lcblknm ) )
119  {
120  blokA++;
121  }
122  }
123  }
124  else {
126  cblk, blokB, fcblk, prio );
127  }
128 }
129 
130 /**
131  *******************************************************************************
132  *
133  * @brief Perform a sparse Cholesky factorization with 1D kernels.
134  *
135  * The function performs the Cholesky factorization of a sparse symmetric
136  * positive definite (or Symmetric positive definite in the real case) matrix
137  * A.
138  * The factorization has the form
139  *
140  * \f[ A = L\times L^T \f]
141  *
142  * where L is a sparse lower triangular matrix.
143  *
144  *******************************************************************************
145  *
146  * @param[inout] sopalin_data
147  * Solver matrix information structure that will guide the algorithm.
148  *
149  * @param[inout] desc
150  * StarPU descriptor of the sparse matrix.
151  *
152  ******************************************************************************/
153 void
154 starpu_dpotrf_sp1dplus_rl( sopalin_data_t *sopalin_data,
156 {
157  const SolverMatrix *solvmtx = sopalin_data->solvmtx;
158  SolverCblk *cblk, *fcblk;
159  SolverBlok *blok, *lblk;
160  pastix_int_t k, m, cblknbr, cblk_n, prio;
161 
162  cblknbr = solvmtx->cblknbr;
163  cblk = solvmtx->cblktab;
164  for ( k = 0; k < solvmtx->cblknbr; k++, cblk++ ) {
165 
166  if ( cblk->cblktype & CBLK_IN_SCHUR ) {
167  break;
168  }
169 
170  prio = cblknbr - k;
171 
172  /* If this is a fanin, let's submit the send */
173  if ( cblk->cblktype & CBLK_FANIN ) {
174  starpu_task_dadd_1dp_fanin( sopalin_data, PastixLCoef, cblk, prio );
176  continue;
177  }
178 
179  /* If this is a recv, let's locally sum the accumulation received */
180  if ( cblk->cblktype & CBLK_RECV ) {
181  starpu_task_dadd_1dp_recv( sopalin_data, PastixLCoef, cblk, prio );
183  continue;
184  }
185 
186  starpu_task_cblk_dpotrfsp( sopalin_data, cblk, prio );
187 
188  blok = cblk->fblokptr + 1; /* this diagonal block */
189  lblk = cblk[1].fblokptr; /* the next diagonal block */
190 
191  /* if there are off-diagonal supernodes in the column */
192  for ( m = 0; blok < lblk; blok++, m++ ) {
193  fcblk = (solvmtx->cblktab + blok->fcblknm);
194  cblk_n = fcblk - solvmtx->cblktab;
196  cblk, blok, fcblk,
197  cblknbr - pastix_imin( k + m, cblk_n ) );
198  }
200  }
201  (void)desc;
202 }
203 
204 /**
205  *******************************************************************************
206  *
207  * @brief Perform a sparse Cholesky factorization with 1D kernels.
208  *
209  * The function performs the Cholesky factorization of a sparse symmetric
210  * positive definite (or Symmetric positive definite in the real case) matrix
211  * A.
212  * The factorization has the form
213  *
214  * \f[ A = L\times L^T \f]
215  *
216  * where L is a sparse lower triangular matrix.
217  *
218  *******************************************************************************
219  *
220  * @param[inout] sopalin_data
221  * Solver matrix information structure that will guide the algorithm.
222  *
223  * @param[inout] desc
224  * StarPU descriptor of the sparse matrix.
225  *
226  ******************************************************************************/
227 void
228 starpu_dpotrf_sp1dplus_ll( sopalin_data_t *sopalin_data,
230 {
231  const SolverMatrix *solvmtx = sopalin_data->solvmtx;
232  SolverCblk *cblk, *fcblk;
233  SolverBlok *blok;
234  pastix_int_t k, m, cblknbr, prio;
235 
236  cblknbr = solvmtx->cblknbr;
237  fcblk = solvmtx->cblktab;
238  for ( k = 0; k < solvmtx->cblknbr; k++, fcblk++ ) {
239 
240  prio = cblknbr - k;
241 
242  for ( m = fcblk[0].brownum; m < fcblk[1].brownum; m++ ) {
243  blok = solvmtx->bloktab + solvmtx->browtab[m];
244  cblk = solvmtx->cblktab + blok->lcblknm;
245 
246  if ( cblk->cblktype & CBLK_IN_SCHUR ) {
247  break;
248  }
249  assert( !( cblk->cblktype & CBLK_FANIN ) );
250 
251  /* If this is a recv, let's locally sum the accumulation received */
252  if ( cblk->cblktype & CBLK_RECV ) {
253  starpu_task_dadd_1dp_recv( sopalin_data, PastixLCoef, cblk, prio );
255  continue;
256  }
257 
259  cblk, blok, fcblk, prio );
260  }
261 
262  if ( fcblk->cblktype & ( CBLK_IN_SCHUR | CBLK_RECV ) ) {
263  continue;
264  }
265 
266  /* If this is a fanin, let's submit the send */
267  if ( fcblk->cblktype & CBLK_FANIN ) {
268  starpu_task_dadd_1dp_fanin( sopalin_data, PastixLCoef, fcblk, prio );
270  continue;
271  }
272 
273  starpu_task_cblk_dpotrfsp( sopalin_data, fcblk, prio );
274  }
275 
276  cblk = solvmtx->cblktab;
277  for ( k = 0; k < solvmtx->cblknbr; k++, cblk++ ) {
278  if ( !(cblk->cblktype & (CBLK_FANIN|CBLK_RECV)) ) {
280  }
281  }
282  (void)desc;
283 }
284 
285 /**
286  *******************************************************************************
287  *
288  * @brief Perform a sparse Cholesky factorization with 1D and 2D kernels.
289  *
290  * The function performs the Cholesky factorization of a sparse symmetric
291  * positive definite (or Symmetric positive definite in the real case) matrix
292  * A.
293  * The factorization has the form
294  *
295  * \f[ A = L\times L^T \f]
296  *
297  * where L is a sparse lower triangular matrix.
298  *
299  *******************************************************************************
300  *
301  * @param[inout] sopalin_data
302  * Solver matrix information structure that will guide the algorithm.
303  *
304  * @param[inout] desc
305  * StarPU descriptor of the sparse matrix.
306  *
307  ******************************************************************************/
308 void
309 starpu_dpotrf_sp2d_rl( sopalin_data_t *sopalin_data,
311 {
312  const SolverMatrix *solvmtx = sopalin_data->solvmtx;
313  SolverCblk *cblk, *fcblk;
314  SolverBlok *blok, *lblk;
315  pastix_int_t k, m, cblknbr, cblk_n, prio;
316 
317  cblknbr = solvmtx->cblknbr;
318 
319  /* Let's submit all 1D tasks first */
320  cblk = solvmtx->cblktab;
321  for ( k = 0; k <= solvmtx->cblkmax1d; k++, cblk++ ) {
322 
323  if ( cblk->cblktype & CBLK_IN_SCHUR ) {
324  break;
325  }
326 
327  if ( cblk->cblktype & CBLK_TASKS_2D ) {
328  continue;
329  }
330 
331  prio = cblknbr - k;
332 
333  /* If this is a fanin, let's submit the send */
334  if ( cblk->cblktype & CBLK_FANIN ) {
335  starpu_task_dadd_1dp_fanin( sopalin_data, PastixLCoef, cblk, prio );
337  continue;
338  }
339 
340  /* If this is a recv, let's locally sum the accumulation received */
341  if ( cblk->cblktype & CBLK_RECV ) {
342  starpu_task_dadd_1dp_recv( sopalin_data, PastixLCoef, cblk, prio );
344  continue;
345  }
346 
347  starpu_task_dpotrfsp( sopalin_data, cblk, prio );
348 
349  blok = cblk->fblokptr + 1;
350  lblk = cblk[1].fblokptr; /* the next diagonal block */
351 
352  for ( m = 0; blok < lblk; blok++, m++ ) {
353  fcblk = ( solvmtx->cblktab + blok->fcblknm );
354  cblk_n = fcblk - solvmtx->cblktab;
355 
356  starpu_task_potrf_dgemmsp( sopalin_data, cblk, blok, fcblk,
357  cblknbr - pastix_imin( k + m, cblk_n ) );
358  }
360  }
361 
362  /* Let's submit all 2D tasks */
363  cblk = solvmtx->cblktab + solvmtx->cblkmin2d;
364  for ( k = solvmtx->cblkmin2d; k < solvmtx->cblknbr; k++, cblk++ ) {
365 
366  if ( cblk->cblktype & CBLK_IN_SCHUR ) {
367  continue;
368  }
369 
370  if ( ! ( cblk->cblktype & CBLK_TASKS_2D ) ) {
371  continue;
372  }
373 
374  prio = cblknbr - k;
375 
376  /* If this is a fanin, let's submit the send */
377  if ( cblk->cblktype & CBLK_FANIN ) {
378  starpu_task_dadd_2d_fanin( sopalin_data, PastixLCoef, cblk, prio );
380  continue;
381  }
382 
383  /* If this is a recv, let's locally sum the accumulation received */
384  if ( cblk->cblktype & CBLK_RECV ) {
385  starpu_task_dadd_2d_recv( sopalin_data, PastixLCoef, cblk, prio );
387  continue;
388  }
389 
390  starpu_task_dpotrfsp( sopalin_data, cblk, prio );
391 
392  blok = cblk->fblokptr + 1;
393  lblk = cblk[1].fblokptr; /* the next diagonal block */
394 
395  for ( m = 0; blok < lblk; blok++, m++ ) {
396  fcblk = ( solvmtx->cblktab + blok->fcblknm );
397  cblk_n = blok->fcblknm;
398 
399  starpu_task_potrf_dgemmsp( sopalin_data, cblk, blok, fcblk,
400  cblknbr - pastix_imin( k + m, cblk_n ) );
401 
402  /* Skip A blocks facing the same cblk */
403  while ( ( blok < lblk ) &&
404  ( blok[0].fcblknm == blok[1].fcblknm ) &&
405  ( blok[0].lcblknm == blok[1].lcblknm ) )
406  {
407  blok++;
408  }
409  }
411  }
412 
413  (void)desc;
414 }
415 
416 /**
417  *******************************************************************************
418  *
419  * @brief Perform a sparse Cholesky factorization with 1D and 2D kernels.
420  *
421  * The function performs the Cholesky factorization of a sparse symmetric
422  * positive definite (or Symmetric positive definite in the real case) matrix
423  * A.
424  * The factorization has the form
425  *
426  * \f[ A = L\times L^T \f]
427  *
428  * where L is a sparse lower triangular matrix.
429  *
430  *******************************************************************************
431  *
432  * @param[inout] sopalin_data
433  * Solver matrix information structure that will guide the algorithm.
434  *
435  * @param[inout] desc
436  * StarPU descriptor of the sparse matrix.
437  *
438  ******************************************************************************/
439 void
440 starpu_dpotrf_sp2d_ll( sopalin_data_t *sopalin_data,
442 {
443  const SolverMatrix *solvmtx = sopalin_data->solvmtx;
444  SolverCblk *cblk, *fcblk;
445  SolverBlok *blok = NULL;
446  SolverBlok *blok_prev;
447  pastix_int_t k, m, cblknbr, prio;
448 
449  cblknbr = solvmtx->cblknbr;
450  fcblk = solvmtx->cblktab;
451  for ( k = 0; k < cblknbr; k++, fcblk++ ) {
452 
453  prio = cblknbr - k;
454 
455  for ( m = fcblk[0].brownum; m < fcblk[1].brownum; m++ ) {
456  blok_prev = blok;
457  blok = solvmtx->bloktab + solvmtx->browtab[m];
458  cblk = solvmtx->cblktab + blok->lcblknm;
459 
460  if ( cblk->cblktype & CBLK_IN_SCHUR ) {
461  continue;
462  }
463  assert( !(cblk->cblktype & CBLK_FANIN ) );
464 
465  if( ( cblk->cblktype & CBLK_TASKS_2D ) &&
466  ( blok_prev != NULL ) &&
467  ( blok_prev->fcblknm == blok->fcblknm ) &&
468  ( blok_prev->lcblknm == blok->lcblknm ) )
469  {
470  continue;
471  }
472 
473  if ( cblk->cblktype & CBLK_RECV ) {
474  starpu_task_dadd_recv( sopalin_data, PastixLCoef, cblk, prio );
476  continue;
477  }
478  starpu_task_potrf_dgemmsp( sopalin_data, cblk, blok, fcblk,
479  prio );
480  }
481 
482  if ( fcblk->cblktype & ( CBLK_IN_SCHUR | CBLK_RECV ) ) {
483  continue;
484  }
485 
486  if ( fcblk->cblktype & CBLK_FANIN ) {
487  starpu_task_dadd_fanin( sopalin_data, PastixLCoef, fcblk, prio );
489  continue;
490  }
491 
492  starpu_task_dpotrfsp( sopalin_data, fcblk, cblknbr - k );
493  }
494 
495  cblk = solvmtx->cblktab;
496  for ( k = 0; k < solvmtx->cblknbr; k++, cblk++ ) {
497  if ( !(cblk->cblktype & (CBLK_FANIN|CBLK_RECV)) ) {
499  }
500  }
501 
502  (void)desc;
503 }
504 
505 /**
506  *******************************************************************************
507  *
508  * @brief Perform a sparse Cholesky factorization using StarPU runtime.
509  *
510  * The function performs the Cholesky factorization of a sparse symmetric
511  * positive definite (or Symmetric positive definite in the real case) matrix
512  * A.
513  * The factorization has the form
514  *
515  * \f[ A = L\times L^T \f]
516  *
517  * where L is a sparse lower triangular matrix.
518  *
519  * The algorithm is automatically chosen between the 1D and 2D version based on
520  * the API parameter IPARM_TASKS2D_LEVEL. If IPARM_TASKS2D_LEVEL != 0
521  * the 2D scheme is applied, the 1D otherwise.
522  *
523  *******************************************************************************
524  *
525  * @param[inout] pastix_data
526  * The pastix_data structure that describes the solver instance.
527  *
528  * @param[inout] sopalin_data
529  * Solver matrix information structure that will guide the algorithm.
530  *
531  ******************************************************************************/
532 void
534  sopalin_data_t *sopalin_data )
535 {
536  starpu_sparse_matrix_desc_t *sdesc = sopalin_data->solvmtx->starpu_desc;
537  double sub = 0.;
538  double com = 0.;
539 
540  /*
541  * Start StarPU if not already started
542  */
543  if (pastix_data->starpu == NULL) {
544  int argc = 0;
545  pastix_starpu_init( pastix_data, &argc, NULL, NULL );
546  }
547 
548  if ( sdesc == NULL ) {
549  /* Create the matrix descriptor */
550  starpu_sparse_matrix_init( sopalin_data->solvmtx,
552  pastix_data->inter_node_procnbr,
553  pastix_data->inter_node_procnum,
554  PastixDouble );
555  sdesc = sopalin_data->solvmtx->starpu_desc;
556  }
557 
558  starpu_profiling_status_set(STARPU_PROFILING_ENABLE);
559 #if defined(STARPU_USE_FXT)
560  if (pastix_data->iparm[IPARM_TRACE] & PastixTraceNumfact) {
561  starpu_fxt_start_profiling();
562  }
563 #endif
564 #if defined(PASTIX_STARPU_STATS)
565  clockStart( sub );
566 #else
567  starpu_resume();
568 #endif
569  /*
570  * Select 1D or 2D algorithm based on 2d tasks level
571  */
572  if ( pastix_data->iparm[IPARM_TASKS2D_LEVEL] != 0 )
573  {
574  if ( pastix_data->iparm[IPARM_FACTO_LOOK_SIDE] == PastixFactLeftLooking ) {
575  starpu_dpotrf_sp2d_ll( sopalin_data, sdesc );
576  }
577  else {
578  starpu_dpotrf_sp2d_rl( sopalin_data, sdesc );
579  }
580  }
581  else
582  {
583  if ( pastix_data->iparm[IPARM_FACTO_LOOK_SIDE] == PastixFactLeftLooking ) {
584  starpu_dpotrf_sp1dplus_ll( sopalin_data, sdesc );
585  }
586  else {
587  starpu_dpotrf_sp1dplus_rl( sopalin_data, sdesc );
588  }
589  }
590 
592 #if defined(PASTIX_STARPU_STATS)
593  clockStop( sub );
594  clockStart( com );
595  starpu_resume();
596 #endif
597  starpu_task_wait_for_all();
598 #if defined(PASTIX_WITH_MPI)
599  starpu_mpi_wait_for_all( pastix_data->pastix_comm );
600  starpu_mpi_barrier( pastix_data->inter_node_comm );
601 #endif
602  starpu_pause();
603 #if defined(STARPU_USE_FXT)
604  if (pastix_data->iparm[IPARM_TRACE] & PastixTraceNumfact) {
605  starpu_fxt_stop_profiling();
606  }
607 #endif
608  starpu_profiling_status_set(STARPU_PROFILING_DISABLE);
609 #if defined(PASTIX_STARPU_STATS)
610  clockStop( com );
611  print_stats( sub, com, pastix_data->solvmatr );
612 #endif
613 
614  (void)com;
615  (void)sub;
616  return;
617 }
618 
619 /**
620  *@}
621  */
BEGIN_C_DECLS typedef int pastix_int_t
Definition: datatypes.h:51
#define PastixSymmetric
Definition: api.h:459
@ PastixLCoef
Definition: api.h:478
@ IPARM_TASKS2D_LEVEL
Definition: api.h:90
@ IPARM_FACTO_LOOK_SIDE
Definition: api.h:100
@ IPARM_TRACE
Definition: api.h:44
@ PastixLower
Definition: api.h:467
@ PastixRight
Definition: api.h:496
@ PastixNonUnit
Definition: api.h:487
@ PastixTrans
Definition: api.h:446
@ PastixFactLeftLooking
Definition: api.h:326
@ PastixTraceNumfact
Definition: api.h:211
void starpu_sparse_matrix_getoncpu(starpu_sparse_matrix_desc_t *desc)
Submit asynchronous calls to retrieve the data on main memory.
void starpu_task_cblk_dpotrfsp(sopalin_data_t *sopalin_data, SolverCblk *cblk, int prio)
TODO.
void starpu_sparse_matrix_init(SolverMatrix *solvmtx, pastix_mtxtype_t mtxtype, int nodes, int myrank, pastix_coeftype_t flttype)
Generate the StarPU descriptor of the sparse matrix.
void pastix_starpu_init(pastix_data_t *pastix, int *argc, char **argv[], const int *bindtab)
Startup the StarPU runtime system.
Definition: starpu.c:92
void starpu_task_blok_dpotrf(sopalin_data_t *sopalin_data, SolverCblk *cblk, int prio)
TODO.
void starpu_sparse_cblk_wont_use(pastix_coefside_t coef, SolverCblk *cblk)
Submit asynchronous calls to retrieve the data on main memory.
void starpu_task_blok_dtrsmsp(sopalin_data_t *sopalin_data, pastix_coefside_t coef, pastix_side_t side, pastix_uplo_t uplo, pastix_trans_t trans, pastix_diag_t diag, const SolverCblk *cblk, SolverBlok *blok, int prio)
StarPU GPU implementation.
void starpu_task_cblk_dgemmsp(sopalin_data_t *sopalin_data, pastix_coefside_t sideA, pastix_coefside_t sideB, pastix_trans_t trans, const SolverCblk *cblk, const SolverBlok *blok, SolverCblk *fcblk, int prio)
StarPU GPU implementation.
void starpu_task_blok_dgemmsp(sopalin_data_t *sopalin_data, pastix_coefside_t sideA, pastix_coefside_t sideB, pastix_trans_t trans, SolverCblk *cblk, SolverCblk *fcblk, const SolverBlok *blokA, const SolverBlok *blokB, int prio)
StarPU GPU implementation.
StarPU descriptor stucture for the sparse matrix.
PASTIX_Comm pastix_comm
Definition: pastixdata.h:76
int inter_node_procnum
Definition: pastixdata.h:84
SolverMatrix * solvmatr
Definition: pastixdata.h:103
int inter_node_procnbr
Definition: pastixdata.h:83
void * starpu
Definition: pastixdata.h:88
pastix_int_t * iparm
Definition: pastixdata.h:70
PASTIX_Comm inter_node_comm
Definition: pastixdata.h:78
Main PaStiX data structure.
Definition: pastixdata.h:68
void starpu_dpotrf_sp1dplus_ll(sopalin_data_t *sopalin_data, starpu_sparse_matrix_desc_t *desc)
Perform a sparse Cholesky factorization with 1D kernels.
void starpu_task_dpotrfsp(sopalin_data_t *sopalin_data, SolverCblk *cblk, int prio)
Submits starpu potrfsp cblk or blok task.
Definition: starpu_dpotrf.c:45
void starpu_dpotrf_sp1dplus_rl(sopalin_data_t *sopalin_data, starpu_sparse_matrix_desc_t *desc)
Perform a sparse Cholesky factorization with 1D kernels.
void starpu_dpotrf_sp2d_ll(sopalin_data_t *sopalin_data, starpu_sparse_matrix_desc_t *desc)
Perform a sparse Cholesky factorization with 1D and 2D kernels.
void starpu_dpotrf(pastix_data_t *pastix_data, sopalin_data_t *sopalin_data)
Perform a sparse Cholesky factorization using StarPU runtime.
void starpu_dpotrf_sp2d_rl(sopalin_data_t *sopalin_data, starpu_sparse_matrix_desc_t *desc)
Perform a sparse Cholesky factorization with 1D and 2D kernels.
void starpu_task_potrf_dgemmsp(sopalin_data_t *sopalin_data, SolverCblk *cblk, const SolverBlok *blokB, SolverCblk *fcblk, int prio)
Submits starpu dgemmsp cblk or blok task.
void starpu_task_dadd_2d_recv(sopalin_data_t *sopalin_data, pastix_coefside_t side, const SolverCblk *cblk, int prio)
Submits starpu zadd task to receive and add the recv block.
void starpu_task_dadd_1dp_recv(sopalin_data_t *sopalin_data, pastix_coefside_t side, const SolverCblk *cblk, int prio)
Submits starpu zadd task to receive and add the recv cblk.
void starpu_task_dadd_1dp_fanin(sopalin_data_t *sopalin_data, pastix_coefside_t side, const SolverCblk *cblk, int prio)
Submits starpu zadd task to send the fanin cblk.
void starpu_task_dadd_fanin(sopalin_data_t *sopalin_data, pastix_coefside_t side, const SolverCblk *cblk, int prio)
Submits starpu zadd task to send the fanin cblk.
void starpu_task_dadd_recv(sopalin_data_t *sopalin_data, pastix_coefside_t side, const SolverCblk *cblk, int prio)
Submits starpu zadd task to send the recv cblk.
void starpu_task_dadd_2d_fanin(sopalin_data_t *sopalin_data, pastix_coefside_t side, const SolverCblk *cblk, int prio)
Submits starpu zadd task to send the fanin block.
pastix_int_t cblkmin2d
Definition: solver.h:219
pastix_int_t brownum
Definition: solver.h:171
pastix_int_t fcblknm
Definition: solver.h:144
pastix_int_t cblknbr
Definition: solver.h:211
SolverBlok *restrict bloktab
Definition: solver.h:229
pastix_int_t cblkmax1d
Definition: solver.h:218
SolverBlok * fblokptr
Definition: solver.h:168
pastix_int_t *restrict browtab
Definition: solver.h:230
pastix_int_t lcblknm
Definition: solver.h:143
SolverCblk *restrict cblktab
Definition: solver.h:228
int8_t cblktype
Definition: solver.h:164
Solver block structure.
Definition: solver.h:141
Solver column block structure.
Definition: solver.h:161
Solver column block structure.
Definition: solver.h:203